Package: FeatureImpCluster 0.1.5

FeatureImpCluster: Feature Importance for Partitional Clustering

Implements a novel approach for measuring feature importance in k-means clustering. Importance of a feature is measured by the misclassification rate relative to the baseline cluster assignment due to a random permutation of feature values. An explanation of permutation feature importance in general can be found here: <https://christophm.github.io/interpretable-ml-book/feature-importance.html>.

Authors:Oliver Pfaffel [aut, cre]

FeatureImpCluster_0.1.5.tar.gz
FeatureImpCluster_0.1.5.zip(r-4.5)FeatureImpCluster_0.1.5.zip(r-4.4)FeatureImpCluster_0.1.5.zip(r-4.3)
FeatureImpCluster_0.1.5.tgz(r-4.4-any)FeatureImpCluster_0.1.5.tgz(r-4.3-any)
FeatureImpCluster_0.1.5.tar.gz(r-4.5-noble)FeatureImpCluster_0.1.5.tar.gz(r-4.4-noble)
FeatureImpCluster_0.1.5.tgz(r-4.4-emscripten)FeatureImpCluster_0.1.5.tgz(r-4.3-emscripten)
FeatureImpCluster.pdf |FeatureImpCluster.html
FeatureImpCluster/json (API)
NEWS

# Install 'FeatureImpCluster' in R:
install.packages('FeatureImpCluster', repos = c('https://o1iv3r.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/o1iv3r/featureimpcluster/issues

On CRAN:

3.53 score 4 stars 17 scripts 401 downloads 1 mentions 3 exports 29 dependencies

Last updated 3 years agofrom:f66ba1c064. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-winOKNov 02 2024
R-4.5-linuxOKNov 02 2024
R-4.4-winOKNov 02 2024
R-4.4-macOKNov 02 2024
R-4.3-winOKNov 02 2024
R-4.3-macOKNov 02 2024

Exports:create_random_dataFeatureImpClusterPermMisClassRate

Dependencies:clicolorspacedata.tablefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr