Package: FeatureImpCluster 0.1.5
FeatureImpCluster: Feature Importance for Partitional Clustering
Implements a novel approach for measuring feature importance in k-means clustering. Importance of a feature is measured by the misclassification rate relative to the baseline cluster assignment due to a random permutation of feature values. An explanation of permutation feature importance in general can be found here: <https://christophm.github.io/interpretable-ml-book/feature-importance.html>.
Authors:
FeatureImpCluster_0.1.5.tar.gz
FeatureImpCluster_0.1.5.zip(r-4.5)FeatureImpCluster_0.1.5.zip(r-4.4)FeatureImpCluster_0.1.5.zip(r-4.3)
FeatureImpCluster_0.1.5.tgz(r-4.4-any)FeatureImpCluster_0.1.5.tgz(r-4.3-any)
FeatureImpCluster_0.1.5.tar.gz(r-4.5-noble)FeatureImpCluster_0.1.5.tar.gz(r-4.4-noble)
FeatureImpCluster_0.1.5.tgz(r-4.4-emscripten)FeatureImpCluster_0.1.5.tgz(r-4.3-emscripten)
FeatureImpCluster.pdf |FeatureImpCluster.html✨
FeatureImpCluster/json (API)
NEWS
# Install 'FeatureImpCluster' in R: |
install.packages('FeatureImpCluster', repos = c('https://o1iv3r.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/o1iv3r/featureimpcluster/issues
Last updated 3 years agofrom:f66ba1c064. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win | OK | Nov 02 2024 |
R-4.5-linux | OK | Nov 02 2024 |
R-4.4-win | OK | Nov 02 2024 |
R-4.4-mac | OK | Nov 02 2024 |
R-4.3-win | OK | Nov 02 2024 |
R-4.3-mac | OK | Nov 02 2024 |
Exports:create_random_dataFeatureImpClusterPermMisClassRate
Dependencies:clicolorspacedata.tablefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Create random data set with 4 clusters | create_random_data |
Feature importance for k-means clustering | FeatureImpCluster |
Permutation misclassification rate for single variable | PermMisClassRate |
Feature importance box plot | plot.featImpCluster |