Package: ClustImpute 0.2.4

ClustImpute: K-Means Clustering with Build-in Missing Data Imputation

This k-means algorithm is able to cluster data with missing values and as a by-product completes the data set. The implementation can deal with missing values in multiple variables and is computationally efficient since it iteratively uses the current cluster assignment to define a plausible distribution for missing value imputation. Weights are used to shrink early random draws for missing values (i.e., draws based on the cluster assignments after few iterations) towards the global mean of each feature. This shrinkage slowly fades out after a fixed number of iterations to reflect the increasing credibility of cluster assignments. See the vignette for details.

Authors:Oliver Pfaffel

ClustImpute_0.2.4.tar.gz
ClustImpute_0.2.4.zip(r-4.5)ClustImpute_0.2.4.zip(r-4.4)ClustImpute_0.2.4.zip(r-4.3)
ClustImpute_0.2.4.tgz(r-4.5-any)ClustImpute_0.2.4.tgz(r-4.4-any)ClustImpute_0.2.4.tgz(r-4.3-any)
ClustImpute_0.2.4.tar.gz(r-4.5-noble)ClustImpute_0.2.4.tar.gz(r-4.4-noble)
ClustImpute_0.2.4.tgz(r-4.4-emscripten)ClustImpute_0.2.4.tgz(r-4.3-emscripten)
ClustImpute.pdf |ClustImpute.html
ClustImpute/json (API)
NEWS

# Install 'ClustImpute' in R:
install.packages('ClustImpute', repos = c('https://o1iv3r.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/o1iv3r/clustimpute/issues

On CRAN:

Conda:

4.96 score 7 stars 13 scripts 429 downloads 5 exports 53 dependencies

Last updated 4 years agofrom:9a0694f368. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 11 2025
R-4.5-winOKMar 11 2025
R-4.5-macOKMar 11 2025
R-4.5-linuxOKMar 11 2025
R-4.4-winOKMar 11 2025
R-4.4-macOKMar 11 2025
R-4.4-linuxOKMar 11 2025
R-4.3-winOKMar 11 2025
R-4.3-macOKMar 11 2025

Exports:%>%ClustImputedefault_wfmiss_simvar_reduction

Dependencies:ADGofTestcliClusterRcolorspacecopulacpp11dplyrevaluatefansifarvergenericsggplot2gluegmpgslgtablehighrisobandknitrlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmenumDerivpcaPPpillarpkgconfigpsplinepurrrR6RColorBrewerRcppRcppArmadillorlangscalesstablediststringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrxfunyaml

Description of the algorithm

Rendered fromdescription_of_algorithm.Rnwusingutils::Sweaveon Mar 11 2025.

Last update: 2020-12-12
Started: 2020-12-12

Example_on_simulated_data

Rendered fromExample_on_simulated_data.Rmdusingknitr::rmarkdownon Mar 11 2025.

Last update: 2021-04-14
Started: 2019-06-02