Package: ClustImpute 0.2.4

ClustImpute: K-Means Clustering with Build-in Missing Data Imputation

This k-means algorithm is able to cluster data with missing values and as a by-product completes the data set. The implementation can deal with missing values in multiple variables and is computationally efficient since it iteratively uses the current cluster assignment to define a plausible distribution for missing value imputation. Weights are used to shrink early random draws for missing values (i.e., draws based on the cluster assignments after few iterations) towards the global mean of each feature. This shrinkage slowly fades out after a fixed number of iterations to reflect the increasing credibility of cluster assignments. See the vignette for details.

Authors:Oliver Pfaffel

ClustImpute_0.2.4.tar.gz
ClustImpute_0.2.4.zip(r-4.5)ClustImpute_0.2.4.zip(r-4.4)ClustImpute_0.2.4.zip(r-4.3)
ClustImpute_0.2.4.tgz(r-4.4-any)ClustImpute_0.2.4.tgz(r-4.3-any)
ClustImpute_0.2.4.tar.gz(r-4.5-noble)ClustImpute_0.2.4.tar.gz(r-4.4-noble)
ClustImpute_0.2.4.tgz(r-4.4-emscripten)ClustImpute_0.2.4.tgz(r-4.3-emscripten)
ClustImpute.pdf |ClustImpute.html
ClustImpute/json (API)
NEWS

# Install 'ClustImpute' in R:
install.packages('ClustImpute', repos = c('https://o1iv3r.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/o1iv3r/clustimpute/issues

On CRAN:

5.02 score 8 stars 13 scripts 394 downloads 5 exports 53 dependencies

Last updated 3 years agofrom:9a0694f368. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winOKNov 11 2024
R-4.5-linuxOKNov 11 2024
R-4.4-winOKNov 11 2024
R-4.4-macOKNov 11 2024
R-4.3-winOKNov 11 2024
R-4.3-macOKNov 11 2024

Exports:%>%ClustImputedefault_wfmiss_simvar_reduction

Dependencies:ADGofTestcliClusterRcolorspacecopulacpp11dplyrevaluatefansifarvergenericsggplot2gluegmpgslgtablehighrisobandknitrlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmenumDerivpcaPPpillarpkgconfigpsplinepurrrR6RColorBrewerRcppRcppArmadillorlangscalesstablediststringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithrxfunyaml

Description of the algorithm

Rendered fromdescription_of_algorithm.Rnwusingutils::Sweaveon Nov 11 2024.

Last update: 2020-12-12
Started: 2020-12-12

Example_on_simulated_data

Rendered fromExample_on_simulated_data.Rmdusingknitr::rmarkdownon Nov 11 2024.

Last update: 2021-04-14
Started: 2019-06-02